
asn1.io/
asn1-python-compiler

by OSS NOKALVA, INC.

simple yet versatile

Summary: ASN.1
End-to-End
● ASN.1 schema to Python codec: simple,

versatile, and fast
● End-to-End tools: schema authoring,

documentation, codec generation, data
troubleshooting

● 5-step quick start: get schema, specify codec,
generate library, code, send/receive data

● Power user tips: upload multiple schema files,
optimize with OER, minimize code size, use
class-based bindings, generate random test
data

● Simple to code: learn 3 functions (encode,
decode, validate), manipulate data with
dictionaries or classes

● Two binding options: native (dictionaries) or
class-based (objects)

ASN.1 End-to-End

Beyond the ASN.1 Python compiler, OSS offers tools for every step of your ASN.1
journey:
● Schema authoring tools and support of the most comprehensive ASN.1

features on the market
Analyzer, Documenter, VS Code Extension

● Generated Python codec library specifically for your schema and your
protocol
two kinds of bindings (dictionaries and classes), optimized for speed, choice of binary format
BER, DER, OER, COER, PER, UPER, CPER, CUPER

● ASN.1 data troubleshooting tools
Playgrounds, Inspectors

Ask us for more details info@oss.com

3

mailto:info@oss.com

5

Quick start
4

.ASN .py

MyApp

MyData

1

2

3

4

You need to communicate in ASN.1:
1. Get the schema
2. Specify the codec options
3. Generate and download a

Python codec library
4. Start coding, get/set the data,

call Encode/Decode/Validate.
5. Send/receive the binary stream

over your connection. 100110… 100110…

Web compiler
does this

You do that

5

Tips & Tricks
5

1

2

3

4

Pro tips that make you a power-user:
1. When your ASN.1 schema consists of more than one file, you can

upload multiple files at once.
2. If you are developing a new protocol, consider OER as the most

optimal (size vs speed). If you want the encodings to be comparable in
binary form, use the canonical formats (COER, CUPER)

3. Minimize generate code size by specifying which schema types you
want to serialize/communicate with.

4. Bindings represent the ASN.1 schema types in Python. “Native”
bindings are dictionary based and require no learning curve to use,
but are harder to manage for large/nested data. “Class” bindings get a
separate Python class for each schema type, which adds some type
safety, type hints, auto-complete.

5. For advanced testing you may need randomized data. This option
allows you to generate random values for the types defined in your
schema, so you do not have to write them manually.

Simple to code
6

Learn three functions

encode()
decode()
validate()

Manipulate the data (the
bindings) as either dictionaries

dicObj = json.loads
('{"range": 0,...

OR class-based objects

msgObj = Rocket()
msgObj.range = 0

My app Generated codec API

import Rocket

set

value = json.loads(...)

encode into OER binary stream
encoded = Rocket.World_Schema .Rocket.encode('OER', value)

send/receive

. . .

decode

decoded = Rocket.World_Schema .Rocket.decode('OER', encoded)

validate

errors = Rocket.World_Schema .Rocket.validate(decoded)

encode

decode

validate

Schema Bindings
to fit your needs

7

There are two alternatives for representing
input/output values (aka bindings that bind
Python values to the schema types):

● native type bindings - best for a quick
start and simple data which can be
manipulated via the Python dictionary
objects.

● class-based bindings - best for complex
data which can utilize the IDE
Intellisense features like autocomplete
and type hints:

import MyProto

Set the native bindings

rocket = {

 "range": 350,

 "speed": { "kmph": 25000}

}

…

import MyProto

import bindings

Create a Rocket instance

rocket = bindings.Rocket()

rocket.range = 350 #set the range

#add an optional field speed

rocket.speed = bindings.Rocket.Speed()

rocket.speed.kmph = 25000

…

Class-based bindingsNative type bindings

Licensing
8

Suitable for your needs

Individual licenses Enterprise licenses

Dedicated customer support
● account Manager
● priority-support@oss.com ✗ ✓

Multiple compiler versions
● early previews
● conformity and migration ✗ ✓

Enterprise console
● team management
● team workspace ✗ ✓

Bundled apps
● Complimentary with a compiler

✗

ASN.1 Playground, NAS Playground,
ASN1Doc, Analyzer, ASN1Vcx

Learn more
9

● https://www.oss.com/asn1/resources/asn1-made-simple/why-asn1.html
two major benefits of ASN.1 schema (compared to say a JSON schema) is Expressivity and Authority

● https://asn1.io/asn1-python-compiler/pyquickstart.html
from a schema to running your code in a few simple steps explained in Quick Start

● https://asn1.io/doc/asn1pyweb/asn1-python-compiler-doc.html
ASN.1 Python Compiler Online documentation

● https://www.oss.com/asn1/resources/asn1-made-simple/asn1-quick-reference.html
ASN.1 Quick Reference

DIFFERENTIATORS
OSS offers more

OSS offers comprehensive technical support with a
long list of customers and decades of history.

SUPPORT

The web compiler is user-friendly and generates
intuitive code that includes schema-specific
samples and customizable options to fit your
preferences.

EASE OF USE

The online platform requires no installation and
provides access from any browser on any platform.

ACCESSIBILITY

OSS employs industry experts for all aspects of
using ASN.1 in a right way

EXPERTISE

10

