asnl.io/
asnl-python-compiler

simple yet versatile

-

summary: ASN.1
End-to-End

e ASN.1schema to Python codec: simple,
versatile, and fast

e End-to-End tools: schema authoring,
documentation, codec generation, data
troubleshooting

e b-step quick start: get schema, specify codec,
generate library, code, send/receive data

e Powerusertips: upload multiple schema files,
optimize with OER, minimize code size, use
class-based bindings, generate random test
data

e Simple to code: learn 3 functions(encode,
decode, validate), manipulate data with
dictionaries or classes

e Two binding options: native (dictionaries) or
class-based (objects)

ASN.1 End-to-End

Beyond the ASN.1Python compiler, 0SS offers tools for every step of your ASN.]1

journey:

® Schema authoring tools and support of the most comprehensive ASN.
features on the market
Analyzer, Documenter, VS Code Extension

® (enerated Python codec library specifically for your schema and your

protocol
two kinds of bindings (dictionaries and classes), optimized for speed, choice of binary format

BER, DER, OER, COER, PER, UPER, CPER, CUPER
e ASN.1datatroubleshooting tools
Playgrounds, Inspectors
Ask us for more details info@oss.com

mailto:info@oss.com

Quick start

. . Web compiler
You need to communicate in ASN.1: does this
1. Getthe schema }
2. Specify the codec options
3. Generate and download a
Python codec library
4. Start coding, get/set the data, YO“dOthat
call Encode/Decode/Validate.

b. Send/receive the binary stream
over your connection. <:>
MyData

Tips & Tricks

Pro tips that make you a power-user:

1. Whenyour ASN.1schema consists of more than one file, you can
upload multiple files at once.

2. Ifyouare developing a new protocol, consider OER as the most
optimal (size vs speed). If you want the encodings to be comparable in
binary form, use the canonical formats(COER, CUPER)

3. Minimize generate code size by specifying which schema types you
want to serialize/communicate with.

4. Bindings represent the ASN.Tschema types in Python. “Native”
bindings are dictionary based and require no learning curve to use,
but are harder to manage for large/nested data. “Class” bindings get a
separate Python class for each schema type, which adds some type
safety, type hints, auto-complete.

5. Foradvanced testing you may need randomized data. This option
allows you to generate random values for the types defined in your
schema, so you do not have to write them manually.

ST R BSTo s S VLWl ENTER MANUALLY v

World-Schema DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Rocket ::= SEQUENCE
£
range INTEGER,
name UTF8String (SIZE(1..16)),

message UTF8String DEFAULT "Hello World" ,
Help Reset

Options:

E— 2

Encoding rule family, e.g. DER

Codec name: |mycodec.py
File name for the codec

Generate codec for schema type(s) (also known as PDU):

O specific ModuleName.TypeName
Specified type Module. Ty e(s), comma separated.
name(s).

@ top level only

Unreferenced,
consiructed types.

O all types
All schema types.
Bindings:
@ native types based
Composed by the application at runtime.

O class based
Generated during schema compilation, offers autocomplete and rich
behavior.

Samples with random values 5
Useful for testing with random data

4

N

Generate Codec

Simple to code

My app

import RoC

se

value = json.loads (...)

encode into OER binary stream

encoded = Rocket .V ma . t .encode ('OER', value)

f send/receive

- .decode ('OER', encoded)

et .validate (decoded)

encode

decode

validate

Generated codec API

Learn three functions

encode()
decode()
validate()

Manipulate the data(the
bindings) as either dictionaries

dicObj = json.loads
("{"range": 0,...

OR class-based objects

msgObj = Rocket()
msgObj.range = 0

Schema Bindings
to fit your needs

There are two alternatives for representing
input/output values (aka bindings that bind
Python values to the schema types): Native type bindings

° native type bindings - best for a quick
start and simple data which can be
manipulated via the Python dictionary
objects.

° class-based bindings - best for complex
data which can utilize the IDE

Intellisense features like autocomplete 350,
—

8 (property) speed: Speed | None d": { "kmph": 25000}
Get the value of the optional ‘speed’ field. Will return '

myField = myObject.speed

24 rocket.speed.l

22 kmph
@ from_native_type

@ get_selected
© has_Kmph
© has_Mph

Class-based bindings

. speed.

kmph = 25000

Licensing

Suitable for your needs

Dedicated customer support
° account Manager
° priority-support@oss.com

Multiple compiler versions
° early previews
° conformity and migration

Enterprise console
° team management
° team workspace

Bundled apps
° Complimentary with a compiler

Individual licenses

Enterprise licenses

v

ASN.1 Playground, NAS Playground,
ASN1Doc, Analyzer, ASN1Vcx

Learn more

e Nttps://www.oss.com/asnl/resources/asnl-made-simple/why-asnl.html
two major benefits of ASN.1schema(compared to say a JSON schema) is Expressivity and Authority

e Nttps://asnl.io/asnl-python-compiler/pyquickstart.html
from a schema to running your code in a few simple steps explained in Quick Start

e Nhttps://asnl.io/doc/asnlpyweb/asnl-python-compiler-doc.html
ASN.1Python Compiler Online documentation

e Nhttps://www.oss.com/asnl/resources/asnl-made-simple/asnl-quick-reference.html
ASN.1Quick Reference

DIFFERENTIATORS

0SS offers more

ACCESSIBILITY

The online platform requires no installation and

provides access from any browser on any platform.

EXPERTISE

0SS employs industry experts for all aspects of
using ASN.Tin a right way

SUPPORT

0SS offers comprehensive technical support with a
long list of customers and decades of history.

EASE OF USE

The web compiler is user-friendly and generates
intuitive code that includes schema-specific
samples and customizable options to fit your
preferences.

